Loading . . .
  • À propos de nous
    • Mission et vision
    • Plan stratégique
    • Conseil d’administration
  • Ressources
    • Lignes directrices
    • Liste des dispositifs recommandés
    • Programme de certification professionnelle
    • Ressources éducatives
  • Plaidoyer
  • Adhésion
  • Nouvelles/eInfo
  • Evénements
    • Informations générales
    • Mois de mesure de mai
  • Récompenses
    • Prix ​​​​généraux
  • Contactez nous
  • Faire un don
  • English

Références

  • Lignes directrices sur les soins primaires 2025
  • Guide pour les patients/le public
  • Recommandations
  • Diagnostic
  • Traitement
  • À propos du guide
    • Méthodes
    • Composition des groupes participants
    • Sélection des sujets prioritaires
    • Revue de la littérature et évaluation de la qualité
    • Élaboration des recommandations
    • Examen externe
    • Gestion des conflits d’intérêts
  • Mise en œuvre
  • Réponses aux questions fréquentes
  • Références
  1. Global Cardiovascular Risk Consortium; Magnussen C, Ojeda FM, Leong DP, et al. Global effect of modifiable risk factors on cardiovascular disease and mortality. N Engl J Med 2023;389:1273–85.
    OpenUrlCrossRefPubMedGoogle Scholar
    1. DeGuire J,
    2. Clarke J,
    3. Rouleau K,
    4. et al

    . Blood pressure and hypertension. Health Rep 2019;30:14–21.

    OpenUrlCrossRefPubMedGoogle Scholar
  2. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021;398:957–80.
    OpenUrlCrossRefPubMedGoogle Scholar
    1. Leung AA,
    2. Williams JVA,
    3. McAlister FA,
    4. et al

    .; Hypertension Canada’s Research and Evaluation Committee. Worsening hypertension awareness, treatment, and control rates in Canadian women between 2007 and 2017. Can J Cardiol 2020;36:732–9.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Leung AA,
    2. Williams JVA,
    3. Padwal RS,
    4. et al

    . Prevalence, patient awareness, treatment, and control of hypertension in Canadian adults with common comorbidities. CJC Open 2024;6:1099–107.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Leung AA,
    2. Bell A,
    3. Tsuyuki RT,
    4. et al

    . Refocusing on hypertension control in Canada. CMAJ 2021;193:E854–5.

    OpenUrlFREE Full TextGoogle Scholar
    1. Goupil R,
    2. Tsuyuki RT,
    3. Terenzi KA,
    4. et al

    . Ushering in a new era of hypertension Canada guidelines: a roadmap of what lies ahead. Can J Cardiol 2025;41:159–62.

    OpenUrlCrossRefPubMedGoogle Scholar
  3. HEARTS technical package for cardiovascular disease management in primary health care: risk based CVD management. Geneva: World Health Organization; 2020.
    Google Scholar
    1. Jaffe MG,
    2. Lee GA,
    3. Young JD,
    4. et al

    . Improved blood pressure control associated with a large-scale hypertension program. JAMA 2013;310:699–705.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Jaffe MG,
    2. Young JD

    . The Kaiser Permanente Northern California story: improving hypertension control from 44% to 90% in 13 years (2000 to 2013). J Clin Hypertens (Greenwich) 2016;18:260–1.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Campbell NRC,
    2. Ordunez P,
    3. Giraldo G,
    4. et al

    . WHO HEARTS: a global program to reduce cardiovascular disease burden — experience implementing in the Americas and opportunities in Canada. Can J Cardiol 2021;37:744–55.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Butalia S,
    2. Audibert F,
    3. Cote AM,
    4. et al

    .; Hypertension Canada. Hypertension Canada’s 2018 guidelines for the management of hypertension in pregnancy. Can J Cardiol 2018;34:526–31.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Dionne JM,
    2. Harris KC,
    3. Benoit G,
    4. et al

    .; Hypertension Canada Guideline Committee. Hypertension Canada’s 2017 guidelines for the diagnosis, assessment, prevention, and treatment of pediatric hypertension. Can J Cardiol 2017; 33:577–85.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Guyatt GH,
    2. Oxman AD,
    3. Vist GE,
    4. et al

    .; GRADE Working Group. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336:924–6.

    OpenUrlFREE Full TextGoogle Scholar
    1. Muntner P,
    2. Shimbo D,
    3. Carey RM,
    4. et al

    . Measurement of blood pressure in humans: a scientific statement from the American Heart Association. Hypertension 2019;73:e35–66.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Stergiou GS,
    2. Alpert B,
    3. Mieke S,
    4. et al

    . A universal standard for the validation of blood pressure measuring devices: association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) collaboration statement. Hypertension 2018;71:368–74.

    OpenUrlCrossRefGoogle Scholar
    1. Picone DS,
    2. Campbell NRC,
    3. Schutte AE,
    4. et al

    . Validation status of blood pressure measuring devices sold globally. JAMA 2022;327:680–1.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Chan JCH,
    2. Vandermeer I,
    3. Picone DS,
    4. et al

    . Validity of home blood pressure devices sold in Canada. CJC Open 2024;6:54–6.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Kallioinen N,
    2. Hill A,
    3. Horswill MS,
    4. et al

    . Sources of inaccuracy in the measurement of adult patients’ resting blood pressure in clinical settings: a systematic review. J Hypertens 2017;35:421–41.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Ishigami J,
    2. Charleston J,
    3. Miller ER III.,
    4. et al

    . Effects of cuff size on the accuracy of blood pressure readings: the Cuff(SZ) randomized crossover trial. JAMA Intern Med 2023;183:1061–8.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Liu H,
    2. Zhao D,
    3. Sabit A,
    4. et al

    . Arm position and blood pressure readings: the ARMS crossover randomized clinical trial. JAMA Intern Med 2024;184:1436–42.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Cheung AK,
    2. Whelton PK,
    3. Muntner P,
    4. et al

    . International consensus on standardized clinic blood pressure measurement: a call to action. Am J Med 2023; 136:438–45.e1.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Pappaccogli M,
    2. Di Monaco S,
    3. Perlo E,
    4. et al

    . Comparison of automated office blood pressure with office and out-off-office measurement techniques. Hypertension 2019;73:481–90.

    OpenUrlCrossRefGoogle Scholar
    1. Roerecke M,
    2. Kaczorowski J,
    3. Myers MG

    . Comparing automated office blood pressure readings with other methods of blood pressure measurement for identifying patients with possible hypertension: a systematic review and meta-analysis. JAMA Intern Med 2019;179:351–62.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Drawz PE,
    2. Agarwal A,
    3. Dwyer JP,
    4. et al

    . Concordance between blood pressure in the systolic blood pressure intervention trial and in routine clinical practice. JAMA Intern Med 2020;180:1655–63.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Einstadter D,
    2. Bolen SD,
    3. Misak JE,
    4. et al

    . Association of repeated measurements with blood pressure control in primary care. JAMA Intern Med 2018;178:858–60.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Zhang W,
    2. Zhang S,
    3. Deng Y,
    4. et al

    . Trial of intensive blood-pressure control in older patients with hypertension. N Engl J Med 2021;385:1268–79.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Liu J,
    2. Li Y,
    3. Ge J,
    4. et al

    .; ESPRIT Collaborative Group. Lowering systolic blood pressure to less than 120 mm Hg versus less than 140 mm Hg in patients with high cardiovascular risk with and without diabetes or previous stroke: an open-label, blinded-outcome, randomised trial. Lancet 2024;404:245–55.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Bi Y,
    2. Li M,
    3. Liu Y,
    4. et al

    .; BPROAD Research Group. Intensive blood-pressure control in patients with type 2 diabetes. N Engl J Med 2025;392:1155–67.

    OpenUrlCrossRefPubMedGoogle Scholar
  4. SPRINT Research Group; Wright JT Jr., Williamson JD, Whelton PK, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med 2015;373:2103–16.
    OpenUrlCrossRefPubMedGoogle Scholar
    1. Rabi DM,
    2. McBrien KA,
    3. Sapir-Pichhadze R,
    4. et al

    . Hypertension Canada’s 2020 comprehensive guidelines for the prevention, diagnosis, risk assessment, and treatment of hypertension in adults and children. Can J Cardiol 2020; 36:596–624.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Staplin N,
    2. de la Sierra A,
    3. Ruilope LM,
    4. et al

    . Relationship between clinic and ambulatory blood pressure and mortality: an observational cohort study in 59 124 patients. Lancet 2023;401:2041–50.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Franklin SS,
    2. Thijs L,
    3. Hansen TW,
    4. et al

    . White-coat hypertension: new insights from recent studies. Hypertension 2013;62:982–7.

    OpenUrlCrossRefGoogle Scholar
    1. Thakkar HV,
    2. Pope A,
    3. Anpalahan M

    . Masked hypertension: a systematic review. Heart Lung Circ 2020;29:102–11.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Guirguis-Blake JM,
    2. Evans CV,
    3. Webber EM,
    4. et al

    . Screening for hypertension in adults: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA 2021;325:1657–69.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Rapsomaniki E,
    2. Timmis A,
    3. George J,
    4. et al

    . Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet 2014;383:1899–911.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Guo X,
    2. Zhang X,
    3. Guo L,
    4. et al

    . Association between pre-hypertension and cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Curr Hypertens Rep 2013;15:703–16.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Whelton PK,
    2. O’Connell S,
    3. Mills KT,
    4. et al

    . Optimal antihypertensive systolic blood pressure: a systematic review and meta-analysis. Hypertension 2024;81:2329–39.

    OpenUrlCrossRefGoogle Scholar
  5. Blood Pressure Lowering Treatment Trialists’ Collaboration. Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: an individual participant-level data meta-analysis. Lancet 2021;397:1625–36.
    OpenUrlCrossRefPubMedGoogle Scholar
    1. Verdecchia P,
    2. Staessen JA,
    3. Angeli F,
    4. et al

    .; Cardio-Sis investigators. Usual versus tight control of systolic blood pressure in non-diabetic patients with hypertension (Cardio-Sis): an open-label randomised trial. Lancet 2009;374:525–33.

    OpenUrlCrossRefPubMedGoogle Scholar
  6. SPS3 Study Group; Benavente OR, Coffey CS, Conwit R, et al. Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial. Lancet 2013;382:507–15.
    OpenUrlCrossRefPubMedGoogle Scholar
    1. Vaduganathan M,
    2. Claggett BL,
    3. Juraschek SP,
    4. et al

    . Assessment of long-term benefit of intensive blood pressure control on residual life span: secondary analysis of the Systolic Blood Pressure Intervention Trial (SPRINT). JAMA Cardiol 2020;5:576–81.

    OpenUrlCrossRefPubMedGoogle Scholar
  7. SPRINT Research Group; Lewis CE, Fine LJ, Beddhu S, et al. Final report of a trial of intensive versus standard blood-pressure control. N Engl J Med 2021;384:1921–30.
    OpenUrlCrossRefPubMedGoogle Scholar
  8. Blood Pressure Lowering Treatment Trialists’ Collaboration. Age-stratified and blood-pressure-stratified effects of blood-pressure-lowering pharmacotherapy for the prevention of cardiovascular disease and death: an individual participant-level data meta-analysis. Lancet 2021;398:1053–64.
    OpenUrlCrossRefPubMedGoogle Scholar
    1. Huang L,
    2. Trieu K,
    3. Yoshimura S,
    4. et al

    . Effect of dose and duration of reduction in dietary sodium on blood pressure levels: systematic review and meta-analysis of randomised trials. BMJ 2020;368:m315.

    OpenUrlAbstract/FREE Full TextGoogle Scholar
    1. Neal B,
    2. Wu Y,
    3. Feng X,
    4. et al

    . Effect of salt substitution on cardiovascular events and death. N Engl J Med 2021;385:1067–77.

    OpenUrlCrossRefPubMedGoogle Scholar
  9. Guideline: Sodium intake for adults and children. Geneva: World Health Organization; 2012:1–56.
    Google Scholar
    1. Mattes RD,
    2. Donnelly D

    . Relative contributions of dietary sodium sources. J Am Coll Nutr 1991;10:383–93.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Mente A,
    2. O’Donnell M,
    3. Rangarajan S,
    4. et al

    . Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community-level prospective epidemiological cohort study. Lancet 2018;392:496–506.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Aburto NJ,
    2. Hanson S,
    3. Gutierrez H,
    4. et al

    . Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ 2013;346:f1378.

    OpenUrlAbstract/FREE Full TextGoogle Scholar
    1. O’Donnell M,
    2. Mente A,
    3. Rangarajan S,
    4. et al

    . Urinary sodium and potassium excretion, mortality, and cardiovascular events. N Engl J Med 2014;371:612–23.

    OpenUrlCrossRefPubMedGoogle Scholar
  10. Guideline: Potassium intake for adults and children. Geneva: World Health Organization; 2012:1–52.
    Google Scholar
    1. Semlitsch T,
    2. Krenn C,
    3. Jeitler K,
    4. et al

    . Long-term effects of weight-reducing diets in people with hypertension. Cochrane Database Syst Rev 2021;2:CD008274.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Wilding JPH,
    2. Batterham RL,
    3. Calanna S,
    4. et al

    .; STEP 1 Study Group. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med 2021;384:989–1002.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Fagard RH,
    2. Cornelissen VA

    . Effect of exercise on blood pressure control in hypertensive patients. Eur J Cardiovasc Prev Rehabil 2007;14:12–7.

    OpenUrlCrossRefPubMedGoogle Scholar
  11. WHO guidelines on physical activity and sedentary behaviour. Geneva: World Health Organization (WHO); 2020:1–104.
    Google Scholar
    1. Roerecke M,
    2. Kaczorowski J,
    3. Tobe SW,
    4. et al

    . The effect of a reduction in alcohol consumption on blood pressure: a systematic review and meta-analysis. Lancet Public Health 2017;2:e108–20.

    OpenUrlCrossRefGoogle Scholar
    1. Liu F,
    2. Liu Y,
    3. Sun X,
    4. et al

    . Race- and sex-specific association between alcohol consumption and hypertension in 22 cohort studies: a systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 2020;30:1249–59.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Primatesta P,
    2. Falaschetti E,
    3. Gupta S,
    4. et al

    . Association between smoking and blood pressure: evidence from the health survey for England. Hypertension 2001;37:187–93.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Yang JJ,
    2. Yu D,
    3. Shu X-O,
    4. et al

    . Reduction in total and major cause-specific mortality from tobacco smoking cessation: a pooled analysis of 16 population-based cohort studies in Asia. Int J Epidemiol 2022;50:2070–81.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Sundström J,
    2. Arima H,
    3. Jackson R,
    4. et al

    .; Blood Pressure Lowering Treatment Trialists’ Collaboration. Effects of blood pressure reduction in mild hypertension: a systematic review and meta-analysis. Ann Intern Med 2015;162:184–91.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. D’Agostino RB Sr.,
    2. Vasan RS,
    3. Pencina MJ,
    4. et al

    . General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008;117:743–53.

    OpenUrlAbstract/FREE Full TextGoogle Scholar
    1. McEvoy JW,
    2. McCarthy CP,
    3. Bruno RM,
    4. et al

    .; ESC Scientific Document Group. 2024 ESC guidelines for the management of elevated blood pressure and hypertension. Eur Heart J 2024;45:3912–4018.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Thomopoulos C,
    2. Parati G,
    3. Zanchetti A

    . Effects of blood-pressure-lowering treatment on outcome incidence. 12. Effects in individuals with high-normal and normal blood pressure: overview and meta-analyses of randomized trials. J Hypertens 2017;35:2150–60.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Beddhu S,
    2. Chertow GM,
    3. Cheung AK,
    4. et al

    .; SPRINT Research Group. Influence of baseline diastolic blood pressure on effects of intensive compared with standard blood pressure control. Circulation 2018;137:134–43.

    OpenUrlAbstract/FREE Full TextGoogle Scholar
    1. Law MR,
    2. Wald NJ,
    3. Morris JK,
    4. et al

    . Value of low dose combination treatment with blood pressure lowering drugs: analysis of 354 randomised trials. BMJ 2003;326:1427.

    OpenUrlAbstract/FREE Full TextGoogle Scholar
    1. Ettehad D,
    2. Emdin CA,
    3. Kiran A,
    4. et al

    . Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 2016;387:957–67.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Wiysonge CS,
    2. Bradley H,
    3. Mayosi BM,
    4. et al

    . Beta-blockers for hypertension. Cochrane Database Syst Rev 2017;(1):CD002003.

    Google Scholar
    1. Andrade JG,
    2. Aguilar M,
    3. Atzema C,
    4. et al

    .; Members of the Secondary Panel. The 2020 Canadian Cardiovascular Society/Canadian Heart Rhythm Society comprehensive guidelines for the management of atrial fibrillation. Can J Cardiol 2020;36:1847–948.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. McDonald M,
    2. Virani S,
    3. Chan M,
    4. et al

    . CCS/CHFS heart failure guidelines update: defining a new pharmacologic standard of care for heart failure with reduced ejection fraction. Can J Cardiol 2021;37:531–46.

    OpenUrlCrossRefPubMedGoogle Scholar
  12. Guideline for the pharmacological treatment of hypertension in adults. Geneva: World Health Organization; 2021:1–61.
    Google Scholar
    1. Fitton CA,
    2. Steiner MFC,
    3. Aucott L,
    4. et al

    . In-utero exposure to antihypertensive medication and neonatal and child health outcomes: a systematic review. J Hypertens 2017;35:2123–37.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Ishani A,
    2. Cushman WC,
    3. Leatherman SM,
    4. et al

    .; Diuretic Comparison Project Writing Group. Chlorthalidone vs. hydrochlorothiazide for hypertension-cardiovascular events. N Engl J Med 2022;387:2401–10.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Gu Q,
    2. Burt VL,
    3. Dillon CF,
    4. et al

    . Trends in antihypertensive medication use and blood pressure control among United States adults with hypertension: the National Health And Nutrition Examination Survey, 2001 to 2010. Circulation 2012;126:2105–14.

    OpenUrlAbstract/FREE Full TextGoogle Scholar
    1. Parati G,
    2. Kjeldsen S,
    3. Coca A,
    4. et al

    . Adherence to single-pill versus free-equivalent combination therapy in hypertension: a systematic review and meta-analysis. Hypertension 2021;77:692–705.

    OpenUrlCrossRefGoogle Scholar
    1. Salam A,
    2. Kanukula R,
    3. Atkins E,
    4. et al

    . Efficacy and safety of dual combination therapy of blood pressure-lowering drugs as initial treatment for hypertension: a systematic review and meta-analysis of randomized controlled trials. J Hypertens 2019;37:1768–74.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Gupta AK,
    2. Arshad S,
    3. Poulter NR

    . Compliance, safety, and effectiveness of fixed-dose combinations of antihypertensive agents: a meta-analysis. Hypertension 2010;55:399–407.

    OpenUrlCrossRefGoogle Scholar
    1. Rea F,
    2. Corrao G,
    3. Merlino L,
    4. et al

    . Initial antihypertensive treatment strategies and therapeutic inertia. Hypertension 2018;72:846–53.

    OpenUrlCrossRefGoogle Scholar
    1. Stankus V,
    2. Hemmelgarn B,
    3. Campbell NR,
    4. et al

    . Reducing costs and improving hypertension management. Can J Clin Pharmacol 2009;16:e151–5.

    OpenUrlPubMedGoogle Scholar
    1. MacDonald TM,
    2. Williams B,
    3. Webb DJ,
    4. et al

    .; British Hypertension Society Programme of Prevention And Treatment of Hypertension With Algorithm-based Therapy (PATHWAY). Combination therapy is superior to sequential monotherapy for the initial treatment of hypertension: a double-blind randomized controlled trial. J Am Heart Assoc 2017;6:e006986.

    OpenUrlAbstract/FREE Full TextGoogle Scholar
    1. Egan BM,
    2. Bandyopadhyay D,
    3. Shaftman SR,
    4. et al

    . Initial monotherapy and combination therapy and hypertension control the first year. Hypertension 2012; 59:1124–31.

    OpenUrlCrossRefGoogle Scholar
    1. Fried LF,
    2. Emanuele N,
    3. Zhang JH,
    4. et al

    .; VA NEPHRON-D Investigators. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med 2013;369:1892–903.

    OpenUrlCrossRefPubMedGoogle Scholar
  13. ONTARGET Investigators; Yusuf S, Teo KK, Pogue J, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 2008;358:1547–59.
    OpenUrlCrossRefPubMedGoogle Scholar
    1. Ojji DB,
    2. Salam A,
    3. Sani MU,
    4. et al

    . Low-dose triple-pill vs standard-care protocols for hypertension treatment in Nigeria: a randomized clinical trial. JAMA 2024;332:1070–9.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Rodgers A,
    2. Salam A,
    3. Schutte AE,
    4. et al

    . Efficacy and safety of a novel low-dose triple single-pill combination compared with placebo for initial treatment of hypertension. J Am Coll Cardiol 2024;84:2393–403.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Webster R,
    2. Salam A,
    3. de Silva HA,
    4. et al

    .; TRIUMPH Study Group. Fixed low-dose triple combination antihypertensive medication vs usual care for blood pressure control in patients with mild to moderate hypertension in Sri Lanka: a randomized clinical trial. JAMA 2018;320:566–79.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Williams B,
    2. MacDonald TM,
    3. Morant S,
    4. et al

    .; British Hypertension Society’s PATHWAY Studies Group. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet 2015;386:2059–68.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Williams B,
    2. MacDonald TM,
    3. Morant SV,
    4. et al

    .; British Hypertension Society programme of Prevention And Treatment of Hypertension With Algorithm based Therapy (PATHWAY) Study Group. Endocrine and haemodynamic changes in resistant hypertension, and blood pressure responses to spironolactone or amiloride: the PATHWAY-2 mechanisms substudies. Lancet Diabetes Endocrinol 2018;6:464–75.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Yang C-T,
    2. Kor C-T,
    3. Hsieh Y-P

    . Long-term effects of spironolactone on kidney function and hyperkalemia-associated hospitalization in patients with chronic kidney disease. J Clin Med 2018;7:459.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Hundemer GL,
    2. Sood MM

    . Hyperkalemia with RAAS inhibition: mechanism, clinical significance, and management. Pharmacol Res 2021;172:105835.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Pitt B,
    2. Zannad F,
    3. Remme WJ,
    4. et al

    . The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999;341:709–17.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Cohen JB,
    2. Cohen DL,
    3. Herman DS,
    4. et al

    . Testing for primary aldosteronism and mineralocorticoid receptor antagonist use among U.S. veterans: a retrospective cohort study. Ann Intern Med 2021;174:289–97.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Xu Z,
    2. Yang J,
    3. Hu J,
    4. et al

    .; Chongqing Primary Aldosteronism Study (CONPASS) Group. Primary aldosteronism in patients in China with recently detected hypertension. J Am Coll Cardiol 2020;75:1913–22.

    OpenUrlFREE Full TextGoogle Scholar
    1. Brown JM,
    2. Siddiqui M,
    3. Calhoun DA,
    4. et al

    . The unrecognized prevalence of primary aldosteronism: a cross-sectional study. Ann Intern Med 2020;173:10–20.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Monticone S,
    2. Burrello J,
    3. Tizzani D,
    4. et al

    . Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J Am Coll Cardiol 2017;69:1811–20.

    OpenUrlFREE Full TextGoogle Scholar
    1. Funder JW,
    2. Carey RM,
    3. Mantero F,
    4. et al

    . The management of primary aldosteronism: case detection, diagnosis, and treatment: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2016;101:1889–916.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Fervers B,
    2. Burgers JS,
    3. Haugh MC,
    4. et al

    . Adaptation of clinical guidelines: literature review and proposition for a framework and procedure. Int J Qual Health Care 2006;18:167–76.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Brouwers MC,
    2. Kho ME,
    3. Browman GP,
    4. et al

    .; AGREE Next Steps Consortium. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ 2010;182:E839–42.

    OpenUrlFREE Full TextGoogle Scholar
    1. Whelton PK,
    2. Carey RM,
    3. Aronow WS,
    4. et al

    . 2017 ACC/AHA/AAPA/ABC/ACPM/ AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018;71:1269–324.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Schünemann HJ,
    2. Al-Ansary LA,
    3. Forland F,
    4. et al

    .; Board of Trustees of the Guidelines International Network. Guidelines International Network: principles for disclosure of interests and management of conflicts in guidelines. Ann Intern Med 2015;163:548–53.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Satheesh G,
    2. Dhurjati R,
    3. Jha V,
    4. et al

    . Effectiveness and safety of using standardized treatment protocols for hypertension compared to usual care: a meta-analysis of randomized clinical trials. J Clin Hypertens (Greenwich) 2025;27:e14950.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Desai AS,
    2. Webb DJ,
    3. Taubel J,
    4. et al

    . Zilebesiran, an RNA interference therapeutic agent for hypertension. N Engl J Med 2023;389:228–38.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Freeman MW,
    2. Halvorsen Y-D,
    3. Marshall W,
    4. et al

    . Phase 2 trial of baxdrostat for treatment-resistant hypertension. N Engl J Med 2023;388:395–405.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Schlaich MP,
    2. Bellet M,
    3. Weber MA,
    4. et al

    .; PRECISION investigators. Dual endothelin antagonist aprocitentan for resistant hypertension (PRECISION): a multicentre, blinded, randomised, parallel-group, phase 3 trial. Lancet 2022; 400:1927–37.

    OpenUrlCrossRefPubMedGoogle Scholar
    1. Sesa-Ashton G,
    2. Nolde JM,
    3. Muente I,
    4. et al

    . Long-term blood pressure reductions following catheter-based renal denervation: a systematic review and meta-analysis. Hypertension 2024;81:e63–70.

    OpenUrlCrossRefGoogle Scholar
    1. Khan SS,
    2. Matsushita K,
    3. Sang Y,
    4. et al

    .; Chronic Kidney Disease Prognosis Consortium and the American Heart Association Cardiovascular-Kidney-Metabolic Science Advisory Group. Development and validation of the American Heart Association’s PREVENT equations [Erratum publié dans Circulation 2024; 149:e956]. Circulation 2024;149:430–49.

    OpenUrlCrossRefPubMedGoogle Scholar
  14. SCORE2 working group and ESC Cardiovascular risk collaboration. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J 2021;42:2439–54.
    OpenUrlCrossRefPubMedGoogle Scholar
    1. Goff DC Jr.,
    2. Lloyd-Jones DM,
    3. Bennett G,
    4. et al

    .; American College of Cardiology/ American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014;129(Suppl 2):S49–73.

    OpenUrlFREE Full TextGoogle Scholar
  15. WHO CVD Risk Chart Group Working. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health 2019;7:e1332–45.
    OpenUrlCrossRefGoogle Scholar
  • À propos de nous
    • Mission et vision
    • Plan stratégique
    • Énoncés de position
    • Conseil d’administration
    • Personnel
  • Ressources
    • Lignes directrices
    • Liste des dispositifs recommandés
    • Programme de certification professionnelle
    • Ressources éducatives
  • À propos de nous
  • Ressources
  • Plaidoyer
  • Adhésion
  • Nouvelles/eInfo
  • Evénements
  • Récompenses
  • Contactez nous
  • Faire un don
  • English

Politique de confidentialité | Conditions d’utilisation

© 2025 Hypertension Canada. Tous droits réservés. Usage non autorisé interdit. Hypertension Canada n’offre pas de conseils médicaux, de diagnostics ou de traitements.